Robust Linear Discriminant Analysis for Chemical Pattern Recognition

نویسنده

  • YANG LI
چکیده

Linear discriminant analysis (LDA) is an effective tool in multivariate multigroup data analysis. A standard technique for LDA is to project the data from a high-dimensional space onto a perceivable subspace such that the data can be separated by visual inspection. The criterion of LDA, unfortunately, is extremely susceptible to outliers which commonly occur because of instrument drift and gross errors. This paper proposes a robust discriminant criterion, and based on that criterion, a high-breakdown method for LDA is developed. In an effort to circumvent the local optima trapping, a real genetic algorithm (RGA) was used for the optimization of the criterion. The RGA is capable of locating the global optimal solution with high probability and acceptable computational burden. Classification of one simulated data set and two real chemical ones shows that the developed robust LDA (RLDA) method provides much superior performance to the standard method for outliercontaminated data and behaves comparably well with the standard one for data without outliers. Copyright  1999 John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supervised Feature Extraction of Face Images for Improvement of Recognition Accuracy

Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...

متن کامل

Video-Based Human Activity Recognition Using Multilevel Wavelet Decomposition and Stepwise Linear Discriminant Analysis

Video-based human activity recognition (HAR) means the analysis of motions and behaviors of human from the low level sensors. Over the last decade, automatic HAR is an exigent research area and is considered a significant concern in the field of computer vision and pattern recognition. In this paper, we have presented a robust and an accurate activity recognition system called WS-HAR that consi...

متن کامل

A Facial Expression Recognition System from Depth Video

In this work, a novel approach is proposed to recognize some facial expressions from time-sequential depth videos. Local Directional Pattern (LDP) features are extracted from the time-sequential depth faces that are followed by Linear Discriminant Analysis (LDA) to make the features more robust. Finally, the robust local features are applied with Hidden Markov Models (HMMs) for facial expressio...

متن کامل

Face Recognition by Cognitive Discriminant Features

Face recognition is still an active pattern analysis topic. Faces have already been treated as objects or textures, but human face recognition system takes a different approach in face recognition. People refer to faces by their most discriminant features. People usually describe faces in sentences like ``She's snub-nosed'' or ``he's got long nose'' or ``he's got round eyes'' and so like. These...

متن کامل

A Multi Linear Discriminant Analysis Method Using a Subtraction Criteria

Linear dimension reduction has been used in different application such as image processing and pattern recognition. All these data folds the original data to vectors and project them to an small dimensions. But in some applications such we may face with data that are not vectors such as image data. Folding the multidimensional data to vectors causes curse of dimensionality and mixed the differe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999