Robust Linear Discriminant Analysis for Chemical Pattern Recognition
نویسنده
چکیده
Linear discriminant analysis (LDA) is an effective tool in multivariate multigroup data analysis. A standard technique for LDA is to project the data from a high-dimensional space onto a perceivable subspace such that the data can be separated by visual inspection. The criterion of LDA, unfortunately, is extremely susceptible to outliers which commonly occur because of instrument drift and gross errors. This paper proposes a robust discriminant criterion, and based on that criterion, a high-breakdown method for LDA is developed. In an effort to circumvent the local optima trapping, a real genetic algorithm (RGA) was used for the optimization of the criterion. The RGA is capable of locating the global optimal solution with high probability and acceptable computational burden. Classification of one simulated data set and two real chemical ones shows that the developed robust LDA (RLDA) method provides much superior performance to the standard method for outliercontaminated data and behaves comparably well with the standard one for data without outliers. Copyright 1999 John Wiley & Sons, Ltd.
منابع مشابه
Supervised Feature Extraction of Face Images for Improvement of Recognition Accuracy
Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...
متن کاملVideo-Based Human Activity Recognition Using Multilevel Wavelet Decomposition and Stepwise Linear Discriminant Analysis
Video-based human activity recognition (HAR) means the analysis of motions and behaviors of human from the low level sensors. Over the last decade, automatic HAR is an exigent research area and is considered a significant concern in the field of computer vision and pattern recognition. In this paper, we have presented a robust and an accurate activity recognition system called WS-HAR that consi...
متن کاملA Facial Expression Recognition System from Depth Video
In this work, a novel approach is proposed to recognize some facial expressions from time-sequential depth videos. Local Directional Pattern (LDP) features are extracted from the time-sequential depth faces that are followed by Linear Discriminant Analysis (LDA) to make the features more robust. Finally, the robust local features are applied with Hidden Markov Models (HMMs) for facial expressio...
متن کاملFace Recognition by Cognitive Discriminant Features
Face recognition is still an active pattern analysis topic. Faces have already been treated as objects or textures, but human face recognition system takes a different approach in face recognition. People refer to faces by their most discriminant features. People usually describe faces in sentences like ``She's snub-nosed'' or ``he's got long nose'' or ``he's got round eyes'' and so like. These...
متن کاملA Multi Linear Discriminant Analysis Method Using a Subtraction Criteria
Linear dimension reduction has been used in different application such as image processing and pattern recognition. All these data folds the original data to vectors and project them to an small dimensions. But in some applications such we may face with data that are not vectors such as image data. Folding the multidimensional data to vectors causes curse of dimensionality and mixed the differe...
متن کامل